Archive for the 'neuroscience' Category

Modeling three-dimensional morphological structures using spherical harmonics.

Evolution. 2009 Apr;63(4):1003-16. Epub 2009 Oct 17.Click here to read // Links

Modeling three-dimensional morphological structures using spherical harmonics.

Center for Neuroimaging, Division of Imaging Sciences, Department of Radiology, Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, 950 W Walnut St, R2 E124, Indianapolis, Indiana 46202, USA. shenli@iupui.edu

Quantifying morphological shape is a fundamental issue in evolutionary biology. Recent technological advances (e.g., confocal microscopy, laser scanning, computer tomography) have made the capture of detailed three-dimensional (3D) morphological structure easy and cost-effective. In this article, we develop a 3D analytic framework (SPHARM-spherical harmonics) for modeling the shapes of complex morphological structures from continuous surface maps that can be produced by these technologies. Because the traditional SPHARM methodology has limitations in several of its processing steps, we present new algorithms for two SPHARM processing steps: spherical parameterization and SPHARM registration. These new algorithms allow for the numerical characterization of a much larger class of 3D models. We demonstrate the effectiveness of the method by applying it to modeling the cerci of Enallagma damselflies.

Publicités

the human connectome project — neuroImagerie

The Human Connectome Project et la Connectomique
par Jean-Paul Baquiast 24/08/2009

On reproche souvent aux technologies de l’imagerie cérébrale fonctionnelle de donner du cerveau humain et de ses activités cognitives des vues trop réductrices. Les observations étaient en effet jusqu’à présent focalisées sur de très petites aires cérébrales. Il était inévitable que les neuroscientifiques les interprétassent au moins partiellement en fonction des idées préconçues qu’ils pouvaient avoir relativement au fonctionnement du cerveau.

Des vues plus globales des aires responsables des états mentaux préconscients seraient cependant désormais disponibles. C’est ce qu’annoncent des scientifiques de la Rutgers University à Newmark et de l’université de Calofornie à Los Angeles dans un numéro à paraître (oct. 2009) de la revue Psychological Science,. On sait qu’il est admis qu’avant leur perception par le niveau conscient (awareness), les informations définissant un état mental donné sont traitées par le cerveau « inconscient ».

Des chercheurs des laboratoires précités, Stephen José Hanson, Russell A. Poldrack et Yaroslav Halchenko, pensent pouvoir prédire avec une précision raisonnable, en utilisant la Résonnance magnétique nucléaire (fMRI), les états mentaux d’une personne, avant même qu’ils ne s’expriment au niveau conscient. Pour cela, ils ont cherché à se donner un aperçu général de l’activité du cerveau, en élargissant la cartographie des observations. Pour eux, l’idée reçue selon laquelle des fonctions mentales spécifiques relèvent d’aires strictement localisées est inexacte.

Il serait selon eux réducteur de penser que des fonctions spécialisées, telles que l’apprentissage, la mémoire, la peur et l’amour, relèvent de bases neurales qui leurs seraient spécifiquement dédiées. Le cerveau est plus complexe qu’il n’apparaît dans ce modèle simple. En analysant son activité globale, ils montrent que plusieurs de ces fonctions font appel à des réseaux particuliers de neurones s’étendant à travers tout le cerveau. Ces réseaux différent les uns des autres selon les fonctions. Ainsi, globalement, à ce niveau, le cerveau ne doit pas être considéré comme statique. Il est capable de moduler les connections correspondantes en fonction des tâches entreprises.

De ce fait, en imageant par fMRI les patterns de connections neuronales qui s’établissent en permanence, il serait possible de prédire avec une bonne précision l’activité mentale particulière à laquelle se livre la personne observée. On pourrait donc dresser un catalogue intéressant un grand nombre de fonctions mentales en les caractérisant par les patterns spécifiques de réseaux neuronaux qui s’établissent à l’occasion de leur exécution par le cerveau. Ceci pourrait être un premier pas dans la voie de la caractérisation de fonctions mentales supérieures, telles que le raisonnement abstrait ou le mensonge. On pourrait aussi détecter les dysfonctionnements subtils se produisant à ce niveau et susceptibles de générer l’autisme ou la schizophrénie.

La réalisation du catalogue des patterns correspondant aux grandes fonctions mentales est déjà engagée. Il s’agit du Projet Connectome. Il vise à terme la réalisation d’une carte complète des connexions neuronales du système nerveux central. Cette carte permettra d’envisager les multiples connections correspondant à une fonction mentale simple, au lieu de se focaliser sur quelques millimètres carré de tissu cortical.

Une première étude a reposé sur la participation de 130 sujets, chacun d’eux chargés de tâches plus ou moins complexes, tout en étant observés par RMI. Pour ce faire, les chercheurs ont observé la somme considérable d’un demi-million de points à la surface du cerveau. Ils ne savaient pas à quelle activité se livraient les témoins. Ils ont pu cependant identifier avec une précision de 80% huit de ces tâches en s’appuyant sur le catalogue des patterns correspondant à des tâches précédemment référencées à partir d’observations précédentes. De plus, dans d’autres expériences, ils ont pu identifier les objets que des sujets pouvaient observer avant que ces derniers ne prennent conscience de le faire. Ceci a confirmé l’hypothèse depuis longtemps admise selon laquelle l’afférence dans l’espace de travail conscient se produit avec retard au regard des traitements primaires réalisés dans les zones sensorielles et motrices.

Le programme de recherche des National Institutes of Health américains, Blueprint for Neuroscience Research, s’insérant dans la National Neurotechnology Initiative, a lancé un projet de $30 millions destiné à cartographier les circuits neuronaux d’un adulte en bonne santé. On utilisera pour cela les techniques d’imageries cérébrales les plus modernes. Les images seront collectées à partir de centaines de sujets volontaires. Le projet vise à accélérer la « Neuro-révolution » que décrit l’ouvrage récent de Zack Lynch The Neuro Revolution: How Brain Science Is Changing Our World (St. Martin’s Press, July 2009).

L’objetif est de faire apparaître les principales connections qui permettent au cerveau d’accomplir les fonctions mentales les plus importantes. Trois techniques d’imagerie seront utilisées : 1. HARDI pour High angular resolution diffusion imaging with magnetic resonance qui détecte la diffusion des molécules d’eau dans les tissus fibreux et peut ainsi visualiser les faisceaux d’axones, 2. R-fMRI pour Resting state fMRI, qui détecte les fluctuations dans l’activité du cerveau chez une personne au repos et peut faire apparaître des réseaux s’activant de façon coordonnée et 3. E/M fMRI pour Electrophysiology and magnetoencephalography (MEG) combined with fMRI. Cette dernière procédure complète l’information relative à l’activité cérébrale parallèlement aux signaux obtenus par la fMRI. Dans ce cas, la personne accomplit une tâche telle que plusieurs régions cérébrales supposées associées à cette tâche soient activées.

Comme ce sera la première fois que ces trois techniques seront utilisées simultanément, le projet devra développer de nouveaux outils informatiques et mathématiques pour analyser les données recueillies.

* NIH Blueprint for neuroscience research
http://neuroscienceblueprint.nih.gov/

Un tel programme, comme on pouvait le supposer, suscite beaucoup de scepticisme. L’objectif consistant à identifier en 5 ans des milliers sinon plus de faisceaux neuronaux actifs, voire dans certains cas de neurones individuels, parait irréaliste. On rappelle que le cerveau comprend des centaines de milliards de cellules et un nombre astronomiquement plus grand de synapses. De plus, certaines des techniques envisagées, qui ont été développées en expérimentant chez l’animal, paraissent encore inapplicables à l’homme.

Plus généralement, établir une carte à grande échelle des connections entre régions cérébrales soulève de nombreux problèmes. D’une part, aucun cerveau n’est comparable à un autre. Mais d’autre part, même en acceptant des approches statistiques, il n’existe pas d’accord sur la délimitation fonctionnelle des aires cérébrales du cortex humain. Il n’est pas certain par exemple que les données dite de tractographie obtenues par certaines techniques, telles que les tenseurs de diffusion observés, puissent être corrélées avec les réalités anatomiques. Autrement dit, comme l’aurait rappelé Borgès, la carte n’est pas le territoire 1).

Les sceptiques continueront donc à se méfier de l’interprétation des observations obtenues par ces nouvelles approches globales. Elles risquent de transporter à un niveau supérieur la subjectivité qui était reprochée aux interprétations des images obtenues avec des techniques moins globales.

Nous dirons pour notre part que, comme toujours en science, notamment lorsque les observations instrumentales recoupent des observations relevant de l’analyse psychologique, la prudence devra continuer à s’imposer. Indéniablement cependant, la voie ouverte par un projet tel que le Connectome aura des suites, notamment pour les informaticiens qui s’efforceront par ailleurs de simuler sur ordinateurs des éléments plus ou moins importants du tissu cérébral (le Blue Gene Project d’IBM, par exemple, dont on vient d’annoncer de nouveaux développements).

1) Plus précisément, comme nous l’indique Luc Charcellay que nous remercions::
“”En cet empire, l’Art de la Cartographie fut poussé à une telle Perfection que la Carte d’une seule Province occupait toute une Ville et la Carte de l’Empire toute une Province. Avec le temps, ces Cartes Démesurées cessèrent de donner satisfaction et les Collèges de Cartographes levèrent une Carte de l’Empire, qui avait le Format de l’Empire et qui coïncidait avec lui, point par point.”
Suarez Miranda, Viajes de Varones Prudentes
Histoire universelle de l’infamie JLB


Pour en savoir plus

* Le Connectome Project http://iic.harvard.edu/research/connectome
* Article de Physorg.com Researchers develop ‘brain-reading’ methods
http://www.physorg.com/news167921900.html

LYON – mitochondria mammals birds lizard – UCP

Reptilian uncoupling protein: functionality and expression in sub-zero temperatures


Author(s): Rey B (Rey, Benjamin)1, Sibille B (Sibille, Brigitte)1, Romestaing C (Romestaing, Caroline)1, Belouze M (Belouze, Maud)1, Letexier D (Letexier, Dominique)1, Servais S (Servais, Stephane)1, Barre H (Barre, Herve)1, Duchamp C (Duchamp, Claude)1, Voituron Y (Voituron, Yann)1,2
Source: JOURNAL OF EXPERIMENTAL BIOLOGY    Volume: 211    Issue: 9    Pages: 1456-1462    Published: MAY 1 2008
Times Cited: 1 References: 51 Citation MapCitation Map
Abstract: Here we report the partial nucleotide sequence of a reptilian uncoupling protein (repUCP) gene from the European common lizard ( Lacerta vivipara). Overlapping sequence analysis reveals that the protein shows 55%, 72% and 77% sequence homology with rat UCP1, UCP2 and UCP3, respectively, and 73% with bird and fish UCPs. RepUCP gene expression was ubiquitously detected in 4 degrees C cold-acclimated lizard tissues and upregulated in muscle tissues by a 20 h exposure to sub-zero temperatures in a supercooling state or after thawing. In parallel, we show an increase in the co-activators, peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1 alpha) and peroxisome proliferator-activated receptors ( PPAR), mRNA expression, suggesting that the mechanisms regulating UCP expression may be conserved between mammals (endotherms) and reptiles (ectotherms). Furthermore, mitochondria extracted from lizard skeletal muscle showed a guanosine diphosphate (GDP)-sensitive non phosphorylating respiration. This last result indicates an inhibition of extra proton leakage mediated by an uncoupling protein, providing arguments that repUCP is functional in lizard tissues. This result is associated with a remarkable GDP-dependent increase in mitochondrial endogenous H2O2 production. All together, these data support a physiological role of the repUCP in superoxide limitation by lizard mitochondria in situations of stressful oxidative reperfusion following a re-warming period in winter.

Toulouse – Maladies cérébro-vasculaires – sténose – stimulation tube section variable

http://www.imft.fr/recherche/gemp/theme1/operation11.html

Animatrice : S. Lorthois

Les infarctus cérébraux sont une des grandes causes mondiales de mortalité et de handicaps. Dans un nombre important de cas, ils sont dus à l’existence d’une sténose (i.e. un rétrécissement localisé) de l’artère carotide interne. A l’heure actuelle, une opération chirurgicale visant à retirer l’artère sténosée est envisagée si le degré de sténose (pourcentage de rétrécissement) est supérieur à 80%. L’Angiographie par Résonance Magnétique (ARM), non invasive, est de plus en plus utilisée pour visualiser la morphologie des artères carotides et évaluer la sévérité des sténoses carotidiennes. Cependant, les structures d’écoulement (zones de recirculations, jets) peuvent induire la présence d’artéfacts. Par exemple, la perte de signal observée en amont et en aval du col des sténoses rend la différenciation entre une sténose sévère et une occlusion difficile voire impossible.

La simulation numérique d’angiographies par résonance magnétiques (ARM) est un outil pouvant aider à la compréhension des mécanismes de production artéfactuelle et aux choix des séquences d’imagerie les plus adaptées pour les minimiser. En formulation Eulerienne, cette simulation implique le calcul du champ des vitesse par résolution numérique des équations de Navier-Stokes puis le calcul du champ d’aimantation par résolution numérique des équations de transport de Bloch. La procédure de construction de l’image, basée sur l’analyse de la distorsion de l’espace physique vers l’espace de l’image, est complexe et lourde à mettre en œuvre numériquement. Nous nous sommes intéressés à simplifier cette procédure par une approche analytique reproduisant l’algorithme de reconstruction de l’image mis en œuvre par les appareils d’ARM (codage spatial du signal puis transformée de Fourier inverse bidimensionnelle). Cette approche analytique simple a été appliquée au cas de la bifurcation carotidienne sévèrement sténosée de géométrie anatomique réaliste. Les résultats ont été comparés avec des expériences réalisées dans un fantôme (moulage silicone) de géométrie identique dans des conditions analogues (collaboration avec D. Saloner et L.D. Jou du Department of Radiology, UC San Francisco). En particulier, les simulations numériques ont permis de clarifier les conditions d’imagerie maximisant et minimisant le degré de sténose évalué par ARM [Lorthois et al., Annals of Biomed Eng, 2005].

En parallèle, en collaboration avec le LMM (P.Y. Lagrée) , nous avons poursuivi les travaux engagés pendant la précédente période concernant l’évaluation de la contrainte de cisaillement pariétale dans une artère sténosée. Nous avons en particulier montré que, dans le cas d’un tube à section variable, le système d’équations « RNS/Prandtl » inclue au premier ordre diverses descriptions asymptotiques des équations de Navier-Stokes et qu’il est donc bien adapté pour décrire la transition entre ces différents descriptions [Lagrée et Lorthois, Int J of Eng Science, 2005]

Publications récentes

S. Lorthois, P.-Y. Lagrée, J.-P. Marc-Vergnes et F. Cassot. « Maximal wall shear stress in arterial stenoses : application to the internal carotid arteries », Transactions of the ASME : Journal of Biomechanical Engineering, 2000, 122 : 661-666.

S. Lorthois, et P.-Y. Lagrée. « Ecoulement dans un convergent axisymétrique : calcul de la contrainte de cisaillement pariétale maximale », Comptes rendus de l’Académie des Sciences, Série IIb, 2000, 328(1) : 33-40.

S. Lorthois, J.S. Stroud-Rossman, S.A Berger, L.D. Jou and D. Saloner. « Numerical simulation of Magnetic Resonance Angiographies of an anatomically realistic stenotic carotid bifurcation », Annals of Biomedical Engineering, 2005 : 33, 270-283.

P.Y. Lagrée et S. Lorthois. « The RNS Prandtl equations and their link with other asymptotic descriptions : application to the wall shear stress scaling in a constricted pipe », International Journal of Engineering Science, 2005 : 43, 352-378.


toulouse Imagerie et analyse statistique de réseaux micro-vasculaires

Imagerie et analyse statistique de réseaux micro-vasculaires

http://www.imft.fr/recherche/gemp/theme1/operation12.html

Ce travail s’est effectué dans le cadre de plusieurs projets sélectionnés et soutenus par l’European Synchrotron Radiation Facilities (ESRF) en collaboration avec C. Fonta du CERCO (UMR CNRS –UPS 5549) et se poursuit dans le cadre de l’ANR-06-BLAN-0238 «Micro-réseau» en collaboration avec l’INRIA Sophia-Antipolis et l’ESRF.

Notre travail a tout d’abord consisté à mettre au point un nouveau protocole expérimental pour l’imagerie tri-dimensionnelle haute résolution de réseaux micro-vasculaires (Plouraboué et al. 2004). Les différentes étapes de cette méthode de préparation sont :

– L’injection de l’ agent de contraste dans l’ensemble du réseau vasculaire
– La préparation et le conditionnement des échantillons biologiques

– L’imagerie par tomographie synchrotron rayon X

L’avantage de l’utilisation des rayons X synchrotrons par rapport à d’autres techniques, comme par exemple la microscopie confocale, est d’imager des volumes considérables (une dizaine de millimètres cubes) avec une résolution spatiale de l’ordre du micron. Cette méthode nous a permis d’obtenir des images 3D de l’ensemble de la vascularisation de la substance grise de cortex de singe Marmousset (Cf figure ci dessus) et de rats sur une profondeur de l’ordre de quelques millimètres. Nous avons alors procédé à l’analyse de ces images dans le cadre de la thèse de Laurent Risser. En haut une image en rendu volumique de micro-réseaux vasculaires extrait du cortex d’un singe Marmousset. La résolution spatiale est de 1.4 microns, les barrres d’échelle en rouge de 100 microns dans chaques directions de sorte que la hauteur totale de l’échantillons correspondant à l’image est d’environ 2 mm. La figure du bas illustre les résultats obtenus avec une méthode de compteur de boites pour l’analyse fractale 3D de la densité vasculaire. On distingue nettement deux « régimes » pour la distribution de la densité. Un premier régime fractal à petite échelle et un second régime homogène partir d’une échelle proche de 40 microns. Figures extraites de Risser et al, 2007. Ce travail a permis de mettre en évidence les différences structurelles entre réseaux micro-vasculaires corticaux sains et tumoraux.

Un premier résultat d’analyse fractale de la densité vasculaire est illustré sur la figure ci-dessus, où l’on a représenté en coordonnées bi-logarithmiques l’évolution du nombre de boites en fonction de l’échelle considérée. Ce résultat indique la présence d’une distribution multi-échelle de dimension fractale égale à 2.1 de la densité vasculaire sur une gamme de un à quarante microns. Au delà de cette échelle, la densité vasculaire évolue comme celle d’un objet homogène. Quarante microns représente donc ici l’échelle d’un volume élémentaire représentatif pour la densité vasculaire. Cette mesure est à notre connaissance la première mesure directe de cette quantité à partir d’images 3D sur des réseaux micro-vasculaires corticaux (L. Risser et al., 2007).

Nous avons de plus développé des outils d’analyse d’image pour la squelettisation, le post-traitement et la numérisation automatique d’images de tomographie synchrotron. Ces outils permettent en particulier de traiter le problème du raccordement automatique des segments capillaires disconnectés (L. Risser et al, 2008).

Publications

F. Plouraboué, P. Cloetens, C. Fonta, A. Steyer, F. Lauwers & J. P Marc-Vergnes, High resolution X-ray Imaging of vascular networks, J. Microscopy, 215, 2, 139-148, 2004.
L. Risser, F. Plouraboué, A. Steyer, P. Cloetens, G. Le Duc & C. Fonta, From homogeneous to fractal normal and tumorous micro-vascular networks in the brain, 27, 2, J. Cereb. Blood flow and Metabolism, 2007.
L. Risser, F. Plouraboué & X. Descombes, Gap Filling of 3-D Micro-vascular Networks by Tensor Voting, to appear in IEEE Transactions in Medical imaging , 2008.
F. Plouraboué, P. Cloetens, A. Steyer, F. Lauwers and J. P Marc-Vergnes, X-ray tomography of human brain cortical vascular network, In Proceedings of the 6th biennial conference on High resolution X-Ray diffraction and imaging, Grenoble, France, 2002.
F. Plouraboué, P. Cloetens, A. Steyer, F. Lauwers and J. P Marc-Vergnes, X-ray tomography of human brain cortical vascular network, In Proceedings of microcirculation congress, Toulouse, France, 2002.
F. Plouraboué, P. Cloetens, A. Steyer, F. Lauwers and J. P Marc-Vergnes, X-ray tomography of human brain cortical vascular network, In Proceedings of the 6th biennial conference on High resolution X-Ray diffraction and imaging, Grenoble, France, 2002.
L. Risser, F. Plouraboué, P. Cloetens, C. Fonta, Cortical variations of vascular density : a 3D investigation, Human Brain Mapping conference, Chicago, USA, June 2007

toulouse – Microcirculation : relations structure/fonction et imagerie fonctionnelle

http://www.imft.fr/recherche/gemp/theme1/operation13.html

Le couplage entre l’activité neuronale et l’hémodynamique microvasculaire est réalisé par une variation active du diamètre des artérioles nourricières. Ce couplage est à la base des techniques d’imagerie fonctionnelle cérébrale qui ont permis, depuis une dizaine d’années, des progrès importants dans l’étude des fonctions cognitives du cerveau humain. En effet, ces techniques reposent sur la mesure indirecte de paramètres liés à l’hémodynamique. Dans ce contexte, dans le cadre de l’ACI Technologies pour la Santé 02TS031, en collaboration avec l’INSERM U455 et le Laboratoire de Physique de la Matière Condensée (UMR 7643), notre objectif à long terme est de comprendre l’effet des variations de diamètre des artérioles nourricières sur l’hémodynamique microvasculaire à l’échelle du volume élémentaire de mesure de ces techniques d’imagerie. Les difficultés proviennent de la complexité de la microcirculation, dont la caractéristique principale est la très grande hétérogénéité à toutes les échelles caractéristiques de l’architecture et du transport microvasculaire.

Evolution temporelle de l’aimantation à l’échelle microscopique (Imagerie par Résonance Magnétique fonctionnelle) : nous avons proposé une approche analytique originale permettant d’obtenir des solutions analytiques, complètes ou asymptotiques, de l’évolution spatiale et temporelle de l’aimantation à l’échelle du vaisseau capillaire, puis d’en déduire sa résultante spatiale (grandeur mesurée en IRMf). Le cas de référence simple d’un capillaire cylindrique infini de susceptibilité magnétique uniforme (et dépendant de la concentration en hémoglobine) dans un milieu infini de susceptibilité constante, soumis à un champ magnétique extérieur appliqué, a été considéré. Dans ce cas, l’expression des inhomogénéités de champ magnétique induites par la discontinuité de susceptibilité est connue. L’équation qui régit le transport de l’aimantation est l’équation de Bloch-Torrey, qui inclue les termes classiques de diffusion et convection auxquels s’ajoutent un terme de précession autour du champ magnétique local et un terme de relaxation. Cette équation a été simplifiée par moyennage temporel sur la période de précession des spins, puis par des arguments dimensionnels, et résolue analytiquement par la méthode des fonctions de Green. L’analyse asymptotique de la solution a permis d’obtenir l’expression analytique d’un champ inhomogène équivalent aux temps longs (t > 500 ms), dû à la diffusion des protons [Castets et al, Arch Physiol Biochem, 2004].

Ecoulement sanguin à l’échelle du réseau microvasculaire : les modèles numériques unidimensionnels non-linéaires de l’écoulement sanguin dans la microcirculation ont été développés et validés expérimentalement, in vivo chez l’animal, depuis une quinzaine d’années, pour des réseaux de petite taille. Dans ces modèles, l’hétérogénéité architecturale constitue une donnée de la simulation. L’hétérogénéité dynamique est représentée par des lois phénoménologiques décrivant les comportements rhéologiques non linéaires de la microcirculation. Nous avons adapté ces modèles pour pouvoir traiter des réseaux de grande taille (40 000 segments). Ces améliorations ont permis la simulation de l’écoulement dans un réseau microvasculaire humain (données morphométriques fournies par F. Cassot, INSERM U455) [Lorthois et al. Journal of Vascular Research, 2006]. Parallèlement, en collaboration avec Vincent Fleury du Laboratoire de Physique de la Matière Condensée (UMR 7643) puis du GMCM à Rennes, nous avons travaillé, à partir du modèle de morphogénèse vasculaire initialement proposé par Vincent Fleury, sur la génération automatique de réseaux modèles quasi-bidimensionnels, intermédiaires entre arbres et maillages, dont la densité vasculaire et le taux de présence d’anastomose (connections directes entre artérioles et veinules) peuvent être contrôlés, ainsi que le nombre d’artérioles terminales et de veinules principales (modèles stochastiques d’angiogenèse, adaptés des modèles de croissance laplacienne). Après construction de la matrice de connectivité de ces réseaux modèles (matrice creuse 40 000 x 40 000 pour un réseau construit sur 200 x 200 capillaires), la simulation de l’écoulement a été mise en œuvre. Le travail en cours sur ces deux types de réseaux concerne l’influence des conditions aux limites imposées ainsi que l’influence des paramètres empiriques décrivant l’effet de ségrégation de phase. Les perspectives à court terme sont l’étude des territoires vasculaires associés aux artérioles et veinules principales ainsi que l’influence d’une variation de diamètre d’une ou plusieurs artérioles sur l’étendue de ces territoires et sur les variations des paramètres intégrés (moyenne et distribution statistique de l’hématocrite, débit tissulaire, temps de transit moyen, résistivité globale, …).

Morphogenèse vasculaire : La morphologie finale des réseaux générés automatiquement en collaboration avec V. Fleury est très dépendante des conditions aux limites imposées, notamment de la position des rudiments artériels et veineux. Pour progresser vers une modélisation tridimensionnelle qui puisse être représentative de l’architecture de la circulation cérébrale, nous nous sommes donc focalisés sur la détermination des conditions aux limites et de leurs modifications lors du développement embryonnaire du cerveau. Pour cela, nous avons observé le développement de la vasculature du cerveau chez l’embryon de poulet. Nous avons montré que, comme dans le cas du sac vitellin, la chronologie de la morphogenèse vasculaire est complexe. Les artères sont les premières à se développer. Puis, une première arborescence veinulaire apparaît, dans un territoire distinct du territoire artériel (configuration cis-cis). Enfin une seconde arborescence veinulaire apparaît, qui se développe en parallèle à l’arborescence artérielle (configuration cis-trans). Nous avons expliqué ce phénomène de transition vasculaire en démontrant qu’il est dû au remodelage mécanique du réseau capillaire à proximité des grosses artères déconnectées de ce réseau, contrairement à notre idée initiale qui se focalisait sur l’influence des conditions aux limites. Nous avons par ailleurs montré que la transition de la configuration cis-cis, initialement moins résistive, à la configuration cis-trans, initialement plus résistive, est liée à la croissance de l’organe et aux gradients de contraintes dans le tissu interstitiel générés par cette croissance. Nous avons présenté un modèle mécanistique simple permettant d’évaluer la taille de l’organe à partir de laquelle se produit cette transition et affiné ce modèle mécanistique par des simulations numériques de type « réseau » dans des vasculatures idéalisées d’organes en croissance [Al-Kilani et al. Physical Review E, à paraître]. Les résultats obtenus dépassent le cadre initialement prévu dans ce travail puisqu’ils apportent un éclairage nouveau sur le rôle des facteurs mécaniques dans la morphogenèse vasculaire, plus particulièrement dans le cadre de la controverse sur le rôle respectif des facteurs génétiques et épigénétiques dans la différentiation artério-veineuse. La prise en compte, dans le modèle de morphogenèse vasculaire développé par V. Fleury, du remodelage mécanique du réseau capillaire à proximité des grosses artères déconnectées de ce réseau reste cependant à réaliser pour que ce modèle soit capable de prédire la transition observée. Cette étape, indispensable à la génération automatique de réseaux tridimensionnels, est encore inachevée.

Dispersion de traceur en milieu poreux à matrice diffusante : une étude expérimentale portant sur la dispersion de traceur en milieu poreux à matrice diffusante (micro-canaux dans un hydrogel) a débuté, dans le contexte de la mesure clinique du débit sanguin cérébral par Tomographie à Emission de Positrons (TEP) [Billanou et al., Computer Methods in Biomechanics and Biomedical Engineering, à paraître].

Etude de la ségrégation de phase au niveau d’une bifurcation divergente : Cf thème Microhydrodynamique.

Publications récentes

M. Castets, S. Lorthois et F. Cassot : « Toward a model of the BOLD effect accounting for microvascular heterogeneity », Archives of Physiology and Biochemistry 2004 ; 112 (Supplement September), p94 (A).

S. Lorthois, F. Cassot et F. Lauwers : « Numerical simulation of blood flow in large microvascular networks of the human cerebral cortex : hemodynamic variations induced by arteriolar vasodilations », Journal of Vascular Research 2006 ; 43(S1), p42 (A).

I. Billanou, P. Duru, S. Lorthois, D. Bourrier and M. Dilhan. “Flow of concentrated red blood cells suspensions in micro-channels : experimental techniques”. CD-ROM du 3ème Congrès Français de Microfluidique 2006 ; 10 pages.

I. Billanou, S. Lorthois et M. Quintard. “A new experimental set-up for the study of tracer exchange between a network of channels and a diffusive matrix: application to kinetic modeling in PET. » à paraître dans Computer Methods in Biomechanics and Biomedical Engineering.

A. Al-Kilani, S. Lorthois,  T.-H. Nguyen, F. Le Noble,  A. Cornelissen,  M. Unbekandt,  O. Boryskina, L. Leroy and V. Fleury. “During vertebrate development, arteries exert a morphological control over the venous pattern through physical factors”, à paraître dans Physical Review E.


Thèse en cours

I. Billanou, Modélisation expérimentale et théorique pour la quantification du débit sanguin par Tomographie à Emission de Positrons (TEP). Thèse financée par l’Institut de Recherche Pierre Fabre et la Région Midi-Pyrénées.


SPM-Haemodynamic Response Function

Generally speaking, cognitive processing is associated with increases in neuronal firing rates. The increased neural activity lead to increased metabolic requirements for the neurons. The onset of neural activity leads to a systematic series of physiological changes in the local network of blood vessels that include changes in the cerebral blood volume per unit of brain tissue (CBV), changes in the rate of cerebral blood flow (CBF), and changes in the concentration of oxyhaemoglobin and deoxyhaemoglobin.

There are different fMRI techniques that can pick up a functional signal corresponding to changes in each of the previously mentioned components of the haemodynamic response. The most common functional imaging signal is the Blood Oxygenation Level Dependent signal (BOLD), which primarily corresponds to the concentration of deoxyhaemoglobin. In simple terms, the magnetic resonance signal comes from exciting hydrogen nuclei with a radiofrequency pulse, and detecting the radio waves emitted as the nuclei return to a lower-energy configuration. Deoxyhaemoglobin has different magnetic properties than oxyhaemoglobin– it is paramagnetic, which means that it will make the local magnetic field over a microscopic domain inhomogenous. This has the effect of dephasing the signal emitted by the nuclei in this domain, causing destructive interference in the observed MR signal. Over a macroscopic domain (i.e., one functional voxel) greater amounts of deoxyhaemoglobin lead to less signal. The functional BOLD signal is seen as an increase in the MR signal that corresponding to a decrease in the concentration of deoxyhaemoglobin. The decrease of deoxy-Hb is seen because the increase in CBF following neural activity more than accounts for the effect of increased uptake of oxygen.

Image:spm_hrf.png

For the purposes of estimating the BOLD signal in an experimental paradigm, SPM makes use of a canonical haemodynamic response function (HRF). This function is assumed to be the response of the system (as reflected by the MR signal) to a brief, intense period of neural stimulation. The SPM HRF is shown above, and exhibits a rise peaking around 6 sec, followed by an undershoot that persists for a considerable period. The code for this graph is below.

>> RT = 1; hrf = spm_hrf(RT); plot(0:RT:32, hrf);

In this graph, the y-axis is in arbitrary units. A common way to plot the impulse response is in units of percent signal change from a baseline condition. A very robust stimulus (such as a contrast taken between a flickering visual stimulus and no visual stimulus) may produce changes on the order of 2%-4% in the BOLD signal. The change observed in contrasts involving higher-level cognitive processes is typically much smaller.

Ref. http://en.wikibooks.org/wiki/SPM/Haemodynamic_Response_Function


I MOVED THIS BLOG FROM WORDPRESS TO BLOGGER. Ce blog est à
ex-ample.blogspot.com

Blog Stats

  • 218 129 hits

localization

Flickr Photos

septembre 2018
L M M J V S D
« Oct    
 12
3456789
10111213141516
17181920212223
24252627282930
Publicités